Abstract

We have modified the B2 edge-plasma code to include the effects of classical fluid drifts across the magnetic field lines and plasma currents. This report presents preliminary results of these effects for the CIT parameter regime. The basic plasma model described by Braams involves solving the continuity equation, the parallel momentum balance equation, and separate energy balance equations for the ions and the electrons. If multiple ion species are present, they are all assumed to have a common temperature, but their densities and parallel velocities are solved for using additional continuity and parallel momentum balance equations for each species. Momentum and heat transport parallel to the magnetic field, B, are given by the classical collisional theory. On the other hand, transport perpendicular to B is represented by anomalous diffusion coefficients which are adjusted to agree with experimental measurements. These transport coefficients are generally taken to be constant in radius and poloidal angle, although this is not necessary. The goal of our work has been to include both the classical cross-field drift terms and the effects of parallel currents in the equations used in the B2 code. The motivation for including the cross-field terms comes from simple model calculations which indicate that the classical flows can contribute an important asymmetry which may help explain the transition from L-mode to H-mode confinement. Radial electric fields which arise near the separatrix cause E {times} B poloidal rotation which may also be related to the L-to-H mode transition through its effect on edge turbulence. Including the parallel currents is done to provide a tool for understanding the biased divertor experiments on DIII-D at General Atomics. Such biasing may provide an effective means of controlling the asymmetry of the power flow to different divertor plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call