Abstract
The influence of weld-simulated heat treatments of 9 to 12 pct steels is evaluated by a fundamental model for creep. The heat-affected microstructure is predicted by considering particle coarsening, particle dissolution, and subgrain coarsening. Particle coarsening is predicted for a multicomponent system, showing significant M23C6 coarsening in the bcc matrix. Dissolution simulations of MX and M23C6 are performed by considering a size distribution of particles, indicating that the smallest particles can be dissolved already at relatively low welding temperatures. Recovery in dislocation networks will take place due to the coarser particles. Creep rate modeling is performed based on the heat-affected microstructure, showing strength reduction of weld-simulated material by 12 pct at 1123 K (850 °C) and 30 pct at 1173 K (900 °C). The main cause of this degradation is believed to be the loss of the smallest carbonitrides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.