Abstract

This paper presents an empirical inquiry into the predictive modeling of crashes involving pedestrians and motorized traffic on roadways. Empirical models based on the negative binomial distribution and mixing distributions, such as the zero-inflated Poisson distribution, are presented and discussed in terms of their applicability to pedestrian crash phenomena. Key modeling issues relating to the presence of excess zeros as well as unobserved heterogeneity in pedestrian crash distributions are addressed. The empirical results show that zero-inflated count distributions, such as the zero-inflated Poisson, are promising methodologies for providing explanatory insights into the causality behind pedestrian-traffic crashes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.