Abstract

AbstractThree basic modeling approaches have been used to numerically simulate fluid turbulence and the banded zonal winds in the interiors and atmospheres of giant planets: shallow-water models, deep-shell Boussinesq models and deep-shell anelastic models. We review these models and discuss the approximations and assumptions upon which they are based. All three can produce banded zonal wind patterns at the surface. However, shallow-water models produce a retrograde (i.e., westward) zonal jet in the equatorial region, whereas strong prograde (i.e., eastward) equatorial jets exist on Jupiter and Saturn. Deep-shell Boussinesq models maintain prograde equatorial jets by the classic method of vortex stretching of convective columnar flows; however, they neglect the effects of the large density stratification in these giant planets. Deep-shell anelastic models account for density stratification and maintain prograde equatorial jets by generating vorticity as rising fluid expands and sinking fluid contracts, without the constraint of long thin convective columns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call