Abstract
AbstractHaptic perception refers to the human ability to perceive spatial properties through tactile and haptic sensations. Humans have an uncanny ability to analyze objects based only on sparse information from haptic stimuli. Contextual clues about material of an object, its overall shape, size and weight configurations perceived by individuals, lead to recognition of an object and its spatial features. In this paper, we present strategies and algorithms to model context in haptic applications that allow user to explore objects in virtual reality/augmented reality, haptically. Our methodology is based on modeling user’s cognitive and motor strategy of haptic exploration. Additionally we also model physiological arrangement of tactile sensors in the human hand. These models provide the context to adapt haptic displays to a user’s style of haptic perception and exploration and the present state of the user’s exploration. We designed a tactile cueing paradigm to test the validity of the contextual models. Initial results show improvement in accuracy and efficiency of haptic perception when compared to the conventional approaches that do not model context in haptic rendering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.