Abstract

The compressive behavior of poly(HIPE) foams was studied using the developed micromechanics based computational model. The model allowed identifying the morphological parameters governing the foam compressive behavior. These parameters comprise: (i) foam density, (ii) Sauter mean diameter of voids calculated from the morphological analysis of the polydispersed microstructure of poly(HIPE), and (iii) polymer/strut characteristic size identified as the height of the curvilinear triangular cross-section. The model prediction compared closely with the experiments and considered both the linear and plateau regions of the compressive poly(HIPE) behavior. The computational model allows the prediction of structure-property relationships for poly(HIPE) foams with various relative densities and open cell microstructure using the input parameters obtained from the morphology characterization of the poly(HIPE). The simulations provide a pathway for understanding how tuning the manufacturing process can enable the optimal foam morphology for targeted mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.