Abstract

The challenge of assigning the absolute stereochemical configuration to a chiral compound can be overcome via accurate ab initio predictions of optical rotation, a sensitive molecular property that is further complicated by solvent effects. The solvent's "chiral imprint"-the transfer of the chirality from the solute to the surrounding achiral solvent-is explored here using conformational averaging and time-dependent density-functional theory. These complex solvent effects are taken into account via simple averaging over a molecular dynamics trajectory together with the explicit quantum mechanical consideration of the solvent molecules within the solute's cybotactic region and implicit modeling of the bulk solvent. We consider several axes along which the system's optical rotation varies, including the sampling of the dynamical trajectory, the quality of the one-electron basis set, and the use of continuum solvent models to account for bulk effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.