Abstract
In video surveillance, it is still a difficult task to segment moving object accurately in complex scenes, since most widely used algorithms are background subtraction. We propose an online and unsupervised technique to find optimal segmentation in a Markov Random Field (MRF) framework. To improve the accuracy, color, locality, temporal coherence and spatial consistency are fused together in the framework. The models of color, locality and temporal coherence are learned online from complex scenes. A novel mixture of nonparametric regional model and parametric pixel-wise model is proposed to approximate the background color distribution. The foreground color distribution for every pixel is learned from neighboring pixels of previous frame. The locality distributions of background and foreground are approximated with the nonparametric model. The temporal coherence is modeled with a Markov chain. Experiments on challenging videos demonstrate the effectiveness of our algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.