Abstract

A major challenge for representative longitudinal studies is panel attrition, because some respondents refuse to continue participating across all measurement waves. Depending on the nature of this selection process, statistical inferences based on the observed sample can be biased. Therefore, statistical analyses need to consider a missing-data mechanism. Because each missing-data model hinges on frequently untestable assumptions, sensitivity analyses are indispensable to gauging the robustness of statistical inferences. This article highlights contemporary approaches for applied researchers to acknowledge missing data in longitudinal, multilevel modeling and shows how sensitivity analyses can guide their interpretation. Using a representative sample of N = 13,417 German students, the development of mathematical competence across three years was examined by contrasting seven missing-data models, including listwise deletion, full-information maximum likelihood estimation, inverse probability weighting, multiple imputation, selection models, and pattern mixture models. These analyses identified strong selection effects related to various individual and context factors. Comparative analyses revealed that inverse probability weighting performed rather poorly in growth curve modeling. Moreover, school-specific effects should be acknowledged in missing-data models for educational data. Finally, we demonstrated how sensitivity analyses can be used to gauge the robustness of the identified effects.

Highlights

  • A major challenge for representative longitudinal studies is panel attrition, because some respondents refuse to continue participating across all measurement waves

  • This article details and contrasts common statistical methods that can be used for modeling competence development in large-scale assessments when a nonrandom dropout mechanism is suspected and the propensity toward nonresponse over time presumably depends on the outcome variable under study

  • missing not at random (MNAR) models We considered three MNAR models that have previously been described in more detail: the Diggle– Kenward selection model (DK), the Wu–Carroll selection model (WC), and the pattern mixture model of Little (PM)

Read more

Summary

Introduction

A major challenge for representative longitudinal studies is panel attrition, because some respondents refuse to continue participating across all measurement waves. Using a representative sample of N = 13,417 German students, the development of mathematical competence across three years was examined by contrasting seven missing-data models, including listwise deletion, full-information maximum likelihood estimation, inverse probability weighting, multiple imputation, selection models, and pattern mixture models. These analyses identified strong selection effects related to various individual and context factors. We examine the relative effects of general intelligence and mathematical self-concept on the growth of mathematical competences over three years

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call