Abstract

We propose a new numerical technique for following the evolution of a self-gravitating collisionless system in general relativity. Matter is modeled as a scalar field obeying the coupled Klein-Gordon and Einstein equations. A phase-space distribution function, constructed using covariant coherent states, obeys the relativistic Vlasov equation provided the de Broglie wavelength for the field is very much smaller than the scales of interest. We illustrate the method by solving for the evolution of a system of particles in a static, plane-symmetric, background spacetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.