Abstract
Collinear and nonlinear characteristics of modeling data have to be addressed for constructing effective soft measuring models. Latent variables (LVs)-based modeling approaches, such as kernel partial least squares (KPLS), can overcome these disadvantages in certain degree. Selective ensemble (SEN) modeling can improve generalization performance of learning models further. Nevertheless, how to select SEN model's learning parameters is an important open issue. In this paper, a novel SENKPLS modeling method based on double-layer genetic algorithm (DLGA) optimization is proposed. At first, one mechanism, titled outside layer adaptive GA (AGA) optimization encoding and decoding principle, is employed to produce initial learning parameter values for KPLS-based candidate sub-models. Then, ensemble sub-models are selected and combined based on inside layer GA optimization toolbox (GAOT) and adaptive weighting fusion (AWF) algorithm. Thus, SEN models of all AGA populations are obtained. Finally, outside layer AGA optimization operations, i.e., selection, crossover and mutation processes, are repeated until the pre-set stopping criterion is satisfied. Simulation results validate the effectiveness of the proposed method as far as the synthetic data, low dimensional and high dimensional benchmark data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.