Abstract

The Quantum Drude Oscillator (QDO) model is a promising candidate for accurately calculating the van der Waals (vdW) interaction. Anisotropic QDO models have recently been used to represent quantum fluctuations of molecular fragments rather than that of single atoms. While this model promises accurate calculation of vdW energy, there is significant room for improvements, such as incorporating a proper fragmentation method, higher-order dispersion corrections, and so forth. The present work attempts to gauge dipole-dipole interactions' ability without fragmentation. A suitable anisotropic damping function is also introduced to work with anisotropic QDO. This revised model accurately predicts the binding energies of vdW complexes for most of the systems considered. This work indicates the limit of dipole approximation for an anisotropic QDO-based model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call