Abstract
The Quantum Drude Oscillator (QDO) model is a promising candidate for accurately calculating the van der Waals (vdW) interaction. Anisotropic QDO models have recently been used to represent quantum fluctuations of molecular fragments rather than that of single atoms. While this model promises accurate calculation of vdW energy, there is significant room for improvements, such as incorporating a proper fragmentation method, higher-order dispersion corrections, and so forth. The present work attempts to gauge dipole-dipole interactions' ability without fragmentation. A suitable anisotropic damping function is also introduced to work with anisotropic QDO. This revised model accurately predicts the binding energies of vdW complexes for most of the systems considered. This work indicates the limit of dipole approximation for an anisotropic QDO-based model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.