Abstract
A semi-empirical model is proposed to quantify the tunneling currents through ultrathin gate oxides (1-3.6 nm). As a multiplier to a simple analytical model, a correction function is introduced to achieve universal applicability to all different combinations of bias polarities (inversion and accumulation), gate materials (N/sup +/, P/sup +/, Si, SiGe) and tunneling processes. Each coefficient of the correction function is given a physical meaning and determined by empirical fitting. This new model can accurately predict all the current components that can be observed: electron tunneling from the conduction band (ECB), electron tunneling from the valence band (EVB), and hole tunneling from the valence hand (HVB) in dual-gate poly-Si/sub 1-x/Ge/sub x/-gated (x=0 or 0.25) CMOS devices for various gate oxide thicknesses. In addition, this model ran also be employed to determine the physical oxide thickness from I-V data with high sensitivity. It is particularly sensitive in the very-thin-oxide regime, where C-V extraction happens to be difficult or impossible (because of the presence of the large tunneling current).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.