Abstract

A method for modeling the significant parameters of closed-loop mechanisms in robots for purposes of calibration is presented. Nonlinear kinematic and mechanical characteristics of the closed-loop mechanisms are modeled in such a way that they can be integrated into an open-loop manipulator model and identified. This integration is accomplished through a separation of the spatial open-loop manipulator (defining the kinematic model) and its joint-actuating mechanisms or actuator models which can be nonlinear in the case of closed-loop mechanisms. Identifiability of model parameters (including elasticity) is analyzed and calibration results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.