Abstract

Climate change has emerged as a global challenge, with consequences for the environment and societies. To mitigate its impacts, reclaimed water (RW) offers potential by reducing water withdrawal and minimizing pollution discharges in the environment. Safe RW requires disinfection and a sound management of chlorine residuals throughout the RW distribution systems (RWDSs). This study focuses on implementing and calibrating a chlorine decay model using EPANET-MSX in a real RWDS, incorporating both bulk and wall decays. The bulk decay accounts for reactions of monochloramine formation, auto-decomposition, and depletion by a parallel second-order mechanism where monochloramine reacts both with fast and slow organic matter reactive fractions. Two wall decays were considered in the RWDS, one in the tank, modeled through an overall wall decay constant, and one in the pipes, modeled through a wall decay constant. Field experiments were conducted to calibrate the complete model. This model was used as a support tool to diagnose the RWDS status condition and cleaning needs, and to manage its operation. Through simulated scenarios considering monochloramine wall decays similar to those observed in drinking water distribution systems, the model allowed predicting adequate chlorine dosing in summer and winter scenarios, so as to guarantee monochloramine concentrations between 1 mg/L and 5 mg/L through the network. These results point to the potential use of much lower doses than the ones currently applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.