Abstract

AbstractDensity functional theory (DFT)-based molecular dynamics (MD) has established itself as a valuable and powerful tool in studies of chemical reactions. Thanks to the rapid increase in power of modern computers, ab initio MD has nowadays become practical. Within the Car-Parinello approach, first-principle MD is already quite popular methodology in molecular modeling. MD reveals the dynamical effects at finite temperatures and is particularly useful in probing the potential energy surfaces. Also, it can be utilized to directly determine the reaction free-energy barriers, as it explicitly includes temperature temperature and thus the entropic effects. The first part of the chapter provides a brief introduction to ab initio MD, within the Born-Oppenheimer Born-Oppe nheimer MD and Car-Parinello approaches. Here, we introduce basic concepts of Car-Parinello MD Car-Parinello MD, with focus on the practical aspects of the simulation. The next part of the chapter summarizes the approaches used to overcome high-energy barriers in a simulation, and thus to probe the part of the potential energy surface relevant for chemical reactions (from the reactants to products through transition states). A special emphasis is placed on the MD simulation along the intrinsic reaction path. The last part of the chapter presents examples from CP-MD simulations from the studies on a complex catalytic process: copolymerization copolymerization of ethylene with polar monomers catalyzed by late transition-metal-complexesKeywordsFirst-Principle Molecular DynamicsCar-Parinello Molecular DynamicsDensity Functional TheoryReaction PathsOlefin Polymerization

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.