Abstract

Macroscopic traits of solidification such as thermal gradient, solidification rate, and other criteria functions were extracted from computer modeling data of a single-crystal, investment-cast superalloy. The thermal histories were used to predict the presence or absence of grain defects in the shaped castings. Freckle defects were found on castings with various processing parameters, even though the traditional microstructural defect map predicted no freckles and a consistent microstructure. The findings suggest that the traditional defect map criteria are insufficient to accurately describe the formation of these and other single-crystal grain defects. Hence, additional criteria for porosity formation and other phenomena were investigated and found to be sensitive to changes in solidification conditions and grain defect formation. The additional functions were found to be necessary to fully capture the total energy of all solidification phenomena. When these functions are used in conjunction with the traits of the microstructural defect map, the prediction of defects in single-crystal castings can more accurately describe solidification under the stringent requirements of single-crystal turbine components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.