Abstract

A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5−5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batch values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 × 10-11 m2/s for 5−5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call