Abstract

A computational framework is presented for the simulation of eukaryotic cell migration and chemotaxis. An empirical pattern formation model, based on a system of nonlinear reaction-diffusion equations, is approximated on an evolving cell boundary using an arbitrary Lagrangian Eulerian surface finite element method (ALE-SFEM). The solution state is used to drive a mechanical model of the protrusive and retractive forces exerted on the cell boundary. Movement of the cell is achieved using a level set method. Results are presented for cell migration with and without chemotaxis. The simulated behavior is compared with experimental results of migrating Dictyostelium discoideum cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call