Abstract

A recently developed full field level-set model of continuous dynamic recrystallization is applied to simulate zircaloy-4 recrystallization during hot compression and subsequent heat treatment. The influence of strain rate, final strain and initial microstructure is investigated, by experimental and simulation tools. The recrystallization heterogeneity is quantified. This enables to confirm that quenched microstructures display a higher extent of heterogeneity. The simulation results replicate satisfactorily experimental observations. The simulation framework is especially able to capture such recrystallization heterogeneity induced by a different initial microstructure. Finally, the role of intragranular dislocation density heterogeneities over the preferential growth of recrystallized grains is pointed out thanks to additional simulations with different numerical formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call