Abstract

Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) utilizes a unique Ni-M bimetallic site in the biosynthesis of acetyl-CoA, where a square-planar Ni ion is coordinated to two thiolates and two deprotonated amides in a Cys-Gly-Cys motif. The identity of M is currently a matter of debate, although both Cu and Ni have been proposed. In an effort to model ACS's unusual active site and to provide insight into the mechanism of acetyl-CoA formation and the role of each of the metals ions, we have prepared and structurally characterized a number of Ni(II)-peptide mimic complexes. The mononuclear complexes Ni(II) N, N'-bis(2-mercaptoethyl)oxamide (1), Ni(II) N, N'-ethylenebis(2-mercaptoacetamide) (2), and Ni(II) N, N'-ethylenebis(2-mercaptopropionamide) (3) model the Ni(Cys-Gly-Cys) site and can be used as synthons for additional multinuclear complexes. Reaction of 2 with MeI resulted in the alkylation of the sulfur atoms and the formation of Ni(II) N, N'-ethylenebis(2-methylmercaptoacetamide) (4), demonstrating the nucleophilicity of the terminal alkyl thiolates. Addition of Ni(OAc)(2).4H(2)O to3 resulted in the formation of a trinuclear species (5), while 2 crystallizes as an unusual paddlewheel complex (6) in the presence of nickel acetate. The difference in reactivity between the similar complexes 2 and 3 highlights the importance of ligand design when synthesizing models of ACS. Significantly,5 maintains the key features observed in the active site of ACS, namely a square-planar Ni coordinated to two deprotonated amides and two thiolates, where the thiolates bridge to a second metal, suggesting that 5 is a reasonable structural model for this unique enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.