Abstract

This paper presents a mathematical model of a batch stirred tank reactor based on an array of identical spherical porous microbioreactors loaded with non specific glucose dehydrogenase and oxygen reducing enzyme, i.e. laccase. The model was validated by experimental data. The microreactors (MR) are mathematically modeled by a two-compartment model, based on reaction–diffusion equations containing nonlinear terms related to the Michaelis–Menten kinetics of two enzymatic reactions with addition of the mass transport. The dynamics of oxygen concentration change is analysed numerically using the finite difference technique. The transient effectiveness factor and the process duration are investigated at different initial concentration of carbohydate (lactose) as well as at internal and external diffusion resistances. The simulation results show a non-monotonic effect of the initial concentration of lactose and nonlinear effects of the internal and external diffusion limitations on the transient effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call