Abstract

In the power turbine component of an aero-engine, there exists a unique cantilever branch structure, on which turbine disks are mounted. Due to the cantilever's characteristics, this structure exhibits a vibration of large amplitude; thus its characteristics need to be studied in detail.In this paper, the motion equations combining the structure and the shaft were deduced; then its vibration mode was given, and the criticl speed was computed; finally the unbalance response of an integrated rotor system was simulated.The calculation results are compared with the simulation results without considering the branch structure.Some key parameters' influences are studied thoroughly, e.g., the branch shaft's length, the flange's offset and the installation orientation. As the results show, the branch structure has a large influence on the vibration mode and critical speed of the rotor system, thus it should not be simplified and ignored in modelling; After adjusting the branch structure's parameters, the characteristics of a vibration mode do not change, and the effects of branch structural parameters on critical speed are closely related to the corresponding vibration mode; the bending stiffness and the critical speed of the rotor system both decreased with increasing branch shaft's length; if reducing the flange's offset and fabricating the branch structure reversely, a sharp increase in the unbalance response of the turbine disc will occur. In conclusion, the dynamical characteristics of the integrated rotor system can be optimized through reasonably designing the branch structure.

Highlights

  • As the results show, the branch structure has a large influence on the vibration mode and critical speed of the rotor system, thus it should not be simplified and ignored in modelling; After adjusting the branch structure’ s parameters, the characteristics of a vi⁃ bration mode do not change, and the effects of branch structural parameters on critical speed are closely related to the corresponding vibration mode; the bending stiffness and the critical speed of the rotor system both decreased with increasing branch shaft’ s length; if reducing the flange’ s offset and fabricating the branch structure reversely, a sharp increase in the unbalance response of the turbine disc will occur

  • 4) 增大大分支轴长度、减小法兰盘偏置量以及 反向安装分支,都会减小转子系统的抗弯刚度,降低 系统临界转速,同时带来涡轮盘处不平衡响应急剧 增大的问题。 因此,需要针对分支结构参数进行合 理设计以避免出现振动过大的问题。

Read more

Summary

Introduction

西北工业大学学报 Journal of Northwestern Polytechnical University https: / / doi.org / 10.1051 / jnwpu / 20183640728 摘 要:针对某型动力涡轮转子特殊的悬臂分支结构,建立了带分支转盘系统的转子动力学模型,该 模型包含了分支系统主要的结构设计参数,推导了其运动微分方程,通过数值方法求解了转子系统的 振型、临界转速和不平衡响应,对比了有无考虑分支结构时的计算结果,重点研究了调节分支结构参 数,如分支轴长度、法兰盘偏置量、分支安装方位等对系统动力特性的影响。 研究表明:分支结构对转 子系统的振型、临界转速等存在重要影响,计算时不应简化忽略;调节分支结构参数不会改变转子系 统的振型属性,其对临界转速的调节效果与相应振型密切相关;增大分支轴长度、减小法兰盘偏置量 以及反向安装分支,会减小转子系统的抗弯刚度,降低临界转速,同时带来涡轮盘处不平衡响应急剧 增大的问题。 因此,针对分支结构参数进行合理设计,可以对转子系统的动力学特性进行优化和 调整。 优化转子模态和降低转子振动的目的,是学者们一 直关注的问题。 黄晶晶等[6⁃7] 以减小整体振动为目 标,对双 盘转子的转盘位置进行了优化。 廖 明 夫 等[8] 提出了高压转子的结构动力学设计方法,为系 统支承刚度的优化设计提供参考。 然而在一些情况 下,转子的结构参数如直径、跨度、转盘位置等由于 受到总体方案的限制使得其可调节的范围很小。 针 对某型动力涡轮转子中存在的分支结构,研究能否 通过调节分支结构参数来改变系统的动力特性以及 设计相应的调节准则,对于拓宽该类转子系统的结 构优化设计思路具有重要的意义,但目前尚未见相 关文献发表。 基于此,本文对某型航空发动机动力 涡轮转子的悬臂分支结构进行数学建模,推导了带 分支结构转子系统的运动方程,通过计算分析,确定 了分支结构的相关设计参数及其对系统动力特性的 影响。 研究结果可为带分支结构转子系统提供结构 参数设计方面的参考。

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call