Abstract
Abstract Shocks are a crucial probe for understanding the ongoing chemistry within ices on interstellar dust grains, where many complex organic molecules (COMs) are believed to be formed. However, previous work has been limited to the initial liberation into the gas phase through nonthermal desorption processes such as sputtering. Here we present results from the adapted three-phase gas-grain chemical network code nautilus, with the inclusion of additional high-temperature reactions, nonthermal desorption, collisional dust heating, and shock physics parameters. This enhanced model is capable of reproducing many of the molecular distributions and abundance ratios seen in our prior observations of the prototypical shocked outflow L1157. In addition, we find that, among others, NH2CHO, HCOOCH3, and CH3CHO have significant post-shock chemistry formation routes that differ from those of many other COMs observed in shocks. Finally, a number of selected species and phenomena are studied here with respect to their usefulness as shock tracers in various astrophysical sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.