Abstract
The usual iterated integral map given by Chen produces an equivalence between the two-sided bar complex on differential forms and the de Rham complex on the path space. This map fails to make sense when considering the curved differential graded algebra of bundle-valued forms with a covariant derivative induced by a connection. In this paper, we define a curved version of Chen’s iterated integral that incorporates parallel transport and maps an analog of the two-sided bar construction on bundle-valued forms to bundle-valued forms on the path space. This iterated integral is proven to be a homotopy equivalence of curved differential graded algebras, and for real-valued forms it factors through the usual Chen iterated integral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.