Abstract

A structural investigation of precise ethylene/1-butene (EB) copolymers has been completed using step polymerization chemistry. The synthetic methodology needed to generate four model copolymers is described; their primary and higher level structure is characterized. The copolymers possess an ethyl branch on every 9th, 15th, and 21st carbon along the backbone of linear polyethylene. Melting points and heats of fusion decrease with increased branch frequency. Differential scanning calorimetry and infrared spectroscopy show highly disordered crystal structures favoring ethyl branch inclusion. On the other hand, the EB copolymers contain high concentrations of kink and gauche defects independent of branch frequency. These model copolymers are compared with random copolymers produced using traditional chain chemistry and previously synthesized ADMET EP copolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.