Abstract

The Air Force Institute of Technology's Center for Directed Energy developed the High Energy Laser End-to-End Operational Simulation (HELEEOS) model in part to quantify the performance variability in laser propagation created by the natural environment during dynamic engagements. As such, HELEEOS includes a fast-calculating, first principles, worldwide surface-to-100 km, atmospheric propagation, and characterization package. This package enables the creation of profiles of temperature, pressure, water vapor content, optical turbulence, atmospheric particulates, and hydrometeors as they relate to line-by-line layer transmission, path, and background radiance at wavelengths from the ultraviolet to radio frequencies. In the current paper an example of a unique high fidelity simulation of a bistatic, time-varying five band multispectral remote observation of energy delivered on a distant and receding test object is presented for noncloudy conditions with aerosols. The multispectral example emphasizes atmospheric effects using HELEEOS, the interaction of the energy and the test object, the observed reflectance, and subsequent hot spot generated. A model of a sensor suite located on the surface is included to collect the diffuse reflected in-band laser radiation and the emitted radiance of the hot spot in four separate and spatially offset midwave infrared and longwave infrared bands. Particular care is taken in modeling the bidirectional reflectance distribution function of the delivered energy/target interaction to account for both the coupling of energy into the test object and the changes in reflectance as a function of temperature. The architecture supports any platform-target-observer geometry, geographic location, season, and time of day, and it provides for correct contributions of the sky-earth background. The simulation accurately models the thermal response, kinetics, turbulence, base disturbance, diffraction, and signal-to-noise ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.