Abstract

A large number of organic contaminants are commonly found in industrial and municipal wastewaters. For proper unit design to remove contaminant mixtures by adsorption, multicomponent adsorption equilibrium models are necessary. The present work examined the applicability of Ideal Adsorbed Solution Theory (IAST), a prevailing thermodynamic model, and its derivatives, i.e., Segregated IAST (SIAST) and Real Adsorbed Solution Theory (RAST), to bisolute adsorption of organic compounds onto a hyper-cross-linked polystyrene resin, MN200. Both IAST and SIAST were found to be less accurate in fitting the experimental bisolute adsorption isotherms than RAST. RAST incorporated with an empirical four-parameter equation developed in this work can fit the adsorbed phase activity coefficients, γi, better than RAST combined with the Wilson equation or the Nonrandom two-liquid (NRTL) model. Moreover, two polyparameter linear free energy relationships were developed for the adsorption of a number of solutes at low concentrations in the presence of a major contaminant (4-methylphenol or nitrobenzene). Results show that these relationships have a great potential in predicting γi of solutes when the adsorbed amounts are dominated by a major contaminant. To the best of our knowledge, this is the first study predicting γi for bisolute adsorption based on molecular descriptors. Overall, our findings have proved a major step forward to accurately modeling multisolute adsorption equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.