Abstract

In recent years, attempts have been made to use preparations that allow obtaining high and good quality yields, while reducing the application of pesticides and mineral fertilizers. These include biostimulants that are safe for the natural environment and contribute to the improvement of yield size and quality, especially after the occurrence of stressors. Their use is advisable in the case of crops sensitive to such biotic stress factors like low temperatures or drought. One of these is soybean which is a very important plant from the economic viewpoint. Field experiments were established in the years 2014-2016 in a random block design in four replicates on experimental plots of 10 m2. Three soybean cultivars: Annushka, Mavka, and Atlanta were planted in the third decade of April. Fylloton biostimulant was used at 0.7% or 1% concentrations as single spraying (BBCH 13-15) or double spraying (BBCH 13-15, BBCH 61) in the vegetation period. The number of seeds per 1 m2, seed yield, thousand seed weight, number of pods per plant, number of nodes in the main shoot, height of plants, and protein and fat contents in seeds were determined. The content of phenolic compounds, antioxidant capacity and antioxidant effect of soybean seeds were assayed as well. Foliar treatment of soybean with Fylloton stimulated the growth and yield of plants without compromising their nutritional and nutraceutical properties. The double application of the higher concentration of Fylloton was favorable for the plant height, seed number and soybean yield. Moreover, the highest number of pods was obtained after single treatment of plants with the lower biostimulant concentration. There was also a positive effect of using this biostimulant on the content and activity of some bioactive compounds, such as phenolics and flavonoids, and on the reducing power.

Highlights

  • The main objective of agricultural holdings is to produce the highest amount of crops, while maintaining the highest quality

  • Very high temperatures at the blooming stage may contribute to reduction in the potential number of seeds per plant, which was reported to have a negative effect on soybean yield (Wheeler et al, 2000)

  • Growth of plants of Mavka cv. was stimulated after double plant spraying with the higher concentration of Fylloton, which was confirmed by results obtained in individual study years

Read more

Summary

Introduction

The main objective of agricultural holdings is to produce the highest amount of crops, while maintaining the highest quality. Water deficit in the soil during drought contributes to seed yield decrease (Cox and Jolliff, 1986), and to an increased content of protein and decrease content of fats in soybean seeds (Dornbos and Mullen, 1992). When these conditions appear, it is justified to use a variety of preparations containing biologically-active substances, including biostimulants. Biostimulants influence metabolic processes in the plant by stimulating the synthesis or increasing phytohormone activity, stimulating the growth of the root system and improving the uptake, translocation and utilization of nutrients, which determines the quantity and quality of the yield, for example, the coloring and chemical composition of the crop. Increasing plant resistance to stressors through the use of biostimulants is likely due to changes in enzymatic activity and increased synthesis of antioxidative compounds (Basak, 2008; Calvo et al, 2014)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.