Abstract
We propose a new model for data processing programs. Our model generalizes the data flow programming style implemented by systems such as Apache Spark, DryadLINQ, Apache Beam and Apache Flink. The model uses directed acyclic graphs (DAGs) to represent the main aspects of data flow-based systems, namely, operations over data (filtering, aggregation, join) and program execution, defined by data dependence between operations. We use Monoid Algebra to model operations over distributed, partitioned datasets and Petri Nets to represent the data flow. This approach allows the data processing program specification to be agnostic of the target Big Data processing system. As a first application of the model, we used it to formalize mutation operators for the application of mutation testing in Big Data processing programs. The testing tool TRANSMUT-Spark implement these operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.