Abstract

This article presents the results of numerical simulations of loading tests conducted on coarse particles that simulate railroad ballast. The objective of this study was to evaluate the deformation of ballast under vertical loading and to study the influence of the two different particle size distributions. One of them was according to particle size distribution recommended by Indraratna and co-workers in the past as an improvement to Australian Standard and the other was prepared in accordance with Brazilian standard. The discrete element method offers a new means of studying the response characteristics of railway ballast. The basic idea of discrete element method (DEM) is that arbitrary discontinuities are divided into a set of rigid elements, making each rigid element satisfy the equations of motion, use time step iteration method for solving the equations of motion of rigid elements, and then obtain the overall movement patterns of arbitrary discontinuities. In this study, the discrete element method of analysis has been used to simulate the geotechnical behaviour of railway ballast observed during the triaxial testing. Three-dimensional numerical simulations were performed using discrete element modeling approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.