Abstract

The potential consequences of bedload transport of postlarvae for patterns of distribution of marine invertebrates were explored by developing a bedload transport model for juvenile bivalves in a small estuary in New Jersey, USA. A simple numerical model of tidal current hydrodynamics was developed based on field measurements of shear stresses near the bottom. Burrowing behavior of bivalves was incorporated into the model of bedload transport by using estimates of entrainment rates of Gemma gemma and Mya arenaria in a laboratory flume, and jump lengths of the bivalves were estimated by methods previously developed for noncohesive particles. Based on the flood domination and strong gradient of shear stresses in the Navesink estuary, our model predicted that juvenile bivalves would accumulate in the center of the estuary, traveling up to several kilometers over 30 days. Field distributions of juvenile bivalves were consistent with the model predictions for other species of bivalves but not for G. gemma, for which field distributions of both 500-μm individuals were concentrated in the eastern end of the estuary. Differences between the bedload model and G. gemma distributions suggest that spatial variation in burrowing behavior or biological interactions are playing an important role in maintaining distribution patterns of this species in spite of high levels of bedload transport. This modeling approach is applicable to other juvenile benthic invertebrates that disperse as bedload and is a useful model against which to compare field observations of rates of transport and patterns of distribution and abundance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.