Abstract

An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular reactors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of small diameter tubes immersed in a shell through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefin over V2O5/γ-Al2O3 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other parameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100% conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96m including 0.5m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72m for the first and 7.32m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor runaway temperature problem and enabled operations at the wider range of conditions to obtain enhanced propylene production in an industrial scale reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.