Abstract
Abstract Induced seismicity is an inherent risk associated with geologic carbon storage (GCS) in deep rock formations that could contain undetected faults prone to failure. Modeling-based risk assessment has been implemented to quantify the potential of injection-induced seismicity, but typically simplified multiscale geologic features or neglected multiphysics coupled mechanisms because of the uncertainty in field data and computational cost of field-scale simulations, which may limit the reliable prediction of seismic hazard caused by industrial-scale CO2 storage. The degree of lateral continuity of the stratigraphic interbedding below the reservoir and depth-dependent fault permeability can enhance or inhibit pore-pressure diffusion and corresponding poroelastic stressing along a basement fault. This study presents a rigorous modeling scheme with optimal geological and operational parameters needed to be considered in seismic monitoring and mitigation strategies for safe GCS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.