Abstract

AbstractIn this paper, an overview of a strategy for automatic meter reading (AMR) data interpretation and aggregation is presented along with the proposed stochastic models adequate for representing the intrinsic characteristics of the data. Water demand measurements from single user accounts are obtained from an AMR system that continuously monitors consumption in different zones of Cincinnati, Ohio. The data represent volumetric measurements characterized by fixed increments, which depend on the sensitivity of the instruments used and occur at irregular times due to the polling method of the AMR system. Given the nature of the data, a nonhomogeneous Poisson process is proposed to model the arrivals of the increments within a selected time interval of 350 days. An exponential-polynomial-trigonometric rate function with multiple periodicities (EPTMP) is assumed to describe both trends and periodicities in the observed data. A specific methodology for estimating the parameters of the EPTMP rate function i...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call