Abstract

Game-theoretic modeling of computer security views security attack scenarios as an optimization game comprising of multiple players notably the attackers and the defenders (system administrators). This paper first presents theoretically, a two-player zero-sum stochastic game model of the interaction between malicious users and network administrators and secondly introduces a hypothetical network of a typical scenario to show the applicability of our model within that scenario. State games are encoded using a binary scheme in order to properly capture components of the underlying network environment. Our solution involves reducing each state game into a min and max linear programming problems for both the defender and attacker respectively. Game costs, rewards and outcomes are modeled to closely match real world measurements. We propose the use of a combination of the pivotal algorithm and a custom stochastic algorithm to compute the optimal (best-response) strategies for the players at each state. We also describe how the results can be analyzed to show how the optimal strategies can be used by the network administrators to predict adversary's actions, determine vulnerable network assets and suggest optimal defense strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call