Abstract

Ataxia-telangiectasia mutated (ATM) is the gene mutated in the cancer-predisposing disorder ataxia-telangiectasia (A-T). We modeled ATM sequence variants identified in UK A-T patients to determine the stability and kinase activity of the resulting proteins as well as the distribution of these mutations across the coding region. Of 20 missense changes modeled, 10 proteins showed ATM kinase activity and 10 showed none. In the majority of cases the mutant ATM protein was unstable, although this was variable. Reduction in ATM kinase activity can result either from the presence of low levels of unstable mutant protein with relatively normal specific kinase activity or from stable mutant protein with deficient ATM kinase activation. Indeed, ATM mutant proteins without kinase activity toward downstream targets were still able to autophosphorylate on serine 1981, although in a much less efficient manner, suggesting that this was not sufficient for ATM activation. In terms of function, green fluorescent protein (GFP)-tagged kinase inactive ATM proteins could form ionizing radiation (IR)-induced foci (IRIF), at least temporarily, which colocalized with the DNA double-strand break (DSB) marker gammaH2AX. Consistent with this, both kinase active and inactive mutant ATM proteins were able to interfere with phosphorylation of targets by endogenous ATM. Since the majority of missense mutations occurred C-terminal to aa1966, including all 10 mutations with absence of kinase activity, the implication was that mutations N-terminal to this, with exceptions, are less likely to result in loss of kinase activity and therefore, are less likely to be identified in A-T patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.