Abstract
The estimation of urban arterial travel time distribution (TTD) is critical to help implement Intelligent Transportation Systems (ITS) and provide travelers with timely and reliable route guidance. The state-of-practice procedure for arterial TTD estimation commonly assumes that the path travel time follows a certain distribution without considering link correlations. However, this approach appears inappropriate since travel times on successive links are essentially dependent along signalized arterials. In this study, a copula-based approach is proposed to model arterial TTD by accounting for spatial link correlations. First, TTDs on consecutive links along one arterial in Hangzhou, China are investigated. Link TTDs are estimated through the nonparametric kernel smoothing method. Link correlations are analyzed in both unfavorable and favorable coordination cases. Then, Gaussian copula models are introduced to model the dependent structure between link TTDs. The parameters of Gaussian copula are obtained by Maximum-Likelihood Estimation (MLE). Next, path TTDs covering consecutive links are estimated based on the estimated copula models. The results demonstrate the advantage of the proposed copula-based approach, compared with the convolution without capturing link correlations and the empirical distribution fitting methods in both unfavorable and favorable coordination cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.