Abstract
Fuzzy modeling is one of the most important techniques for nonlinear modeling. SIRMs (Single Input Rule Modules) has been studied as a useful modeling method for real-life applications such as control and pattern recognition. Although the SIRMs is a practical modeling approach based on fuzzy reasoning, its performance is adversely affected by high-dimensional or complicated characteristics of the problems. The modular fuzzy model is an extension of the SIRMs for overcoming such a performance problem. In this paper, we study a modeling approach based on the modular fuzzy model by extending the SIRMs architecture. We show that the construction of error objective functions for modeling the modular fuzzy model and the SIRMs affects the prediction performance of the model. Through numerical experiments on modeling problems and reinforcement learning problems, we study the model construction based on the error objective functions. We find that the error objective function should be selected according to the number of dimensions of projection in the modular fuzzy model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.