Abstract
Hierarchical structures of many agglomerated primary crystals are often employed as cathode materials, especially for layered-oxide compounds. The anisotropic nature of these materials results in a strong correlation between particle morphology and ion transport. In this work, we present a multiphase-field framework that is able to account for strongly anisotropic diffusion in polycrystalline materials. Various secondary particle structures with random grain orientation as well as strongly textured samples are investigated. The observed ion distributions match well with the experimental observations. Furthermore, we show how these simulations can be used to mimic potentiostatic intermittent titration technique (PITT) measurements and compute effective diffusion coefficients for secondary particles. The results unravel the intrinsic relation between particle microstructure and the apparent diffusivity. Consequently, the modeling framework can be employed to guide the microstructure design of secondary battery particles. Furthermore, the phase-field method closes the gap between computation of diffusivities on the atomistic scale and the effective properties of secondary particles, which are a necessary input for Newman-type cell models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.