Abstract

The macro fiber composite (MFC) is a novel piezoelectric intelligent material, which is widely used in the field of vibration control due to its flexibility and larger actuation forces than PZT. In this paper, a laminated plate model considering the anisotropy of MFC is developed and applied to the vibration control of a rotating plate. The laminated plate is defined as a layerwise model, which deformation is described by the Absolute Nodal Coordinate Formulation (ANCF). The MFC laminated plate element contains 48 degrees of freedom (DOFs) where the effect of MFC element can be internally incorporated without increasing the DOFs of system. Simultaneously, a neural network PD control is adopted to control the vibration of the rotating plate. Eventually, static, dynamic, and modal analyses are performed to investigate the effects of different parameters. Several vibration simulations are carried out to illustrate the ability of MFC patches on vibration control. The findings in this article would be applied to mechanical prediction and control for rotor blades of helicopters, solar panels, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call