Abstract
Compared to the traditional wet-mate underwater power supply method, Magnetic Coupling Resonant Wireless Power Transfer (MCR-WPT) technology boasts advantages such as excellent insulation, high safety, and convenient operation, showing promising application prospects in the field of power supply for underwater vehicles and other mobile underwater devices. In order to explore the transmission characteristics of this technology underwater, this article first establishes a traditional mathematical model, and then modifies the underwater model through analysis of changes in coil self-inductance and mutual inductance, as well as the impact of eddy current losses. Using the modified mathematical model of the underwater MCR-WPT system, the transmission characteristics are analyzed, and simulations and experimental validations are performed using MATLAB R2022a software. In the study of frequency characteristics, it is found that the system operates optimally when both ends of the circuit work at the resonant state; that is, when finput = fresonance = 100 kHz, the output performance is at its best, and the optimal resonant frequency significantly improves power and transmission efficiency. When the input frequency is less than 87.3 kHz or greater than 122.9 kHz, the output power decreases to less than half of the maximum power. In the investigation of load effects, the optimal load for maximizing system output power was identified, but the load that maximizes transmission efficiency is different from this optimal load. This study provides strong theoretical support and guidance for improving the performance of underwater wireless power transmission systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.