Abstract

Computation task service delivery in a computing-enabled and caching-aided multi-user mobile edge computing (MEC) system is studied in this paper, where a MEC server can deliver the input or output datas of tasks to mobile devices over a wireless multicast channel. The computing-enabled and caching-aided mobile devices are able to store the input or output datas of some tasks, and also compute some tasks locally, reducing the wireless bandwidth consumption. The corresponding framework of this system is established, and under the latency constraint, we jointly optimize the caching and computing policy at mobile devices to minimize the required transmission bandwidth. The joint policy optimization problem is shown to be NP-hard, and based on equivalent transformation and exact penalization of the problem, a stationary point is obtained via concave convex procedure (CCCP). Moreover, in a symmetric scenario, gains offered by this approach are derived to analytically understand the influences of caching and computing resources at mobile devices, multicast transmission, the number of mobile devices, as well as the number of tasks on the transmission bandwidth. Our results indicate that exploiting the computing and caching resources at mobile devices can provide significant bandwidth savings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.