Abstract

This paper reports the modeling and experimental testing of a novel XY flexure-based nano-positioning stage. The stage is driven by two piezoelectric actuators, and a novel compound decoupling-guiding mechanism is designed. The mechanism mainly features with the series connection of separated prismatic join and parallelogram, which reduces the parasitic displacement of the actuator and guides the motion of end-effector. A compound bridge type amplifier and centrosymmetric mechanism are adopted to obtain decoupled large range motion. A kinematics model using the compliance matrix method is established to describe the characteristics of stage. Finite element analysis is also conducted to evaluate the performance of the nano-positioning stage. A prototype of the stage has been fabricated by the wire electro discharge machining method. Experimental verification is further carried out, the results demonstrate that the proposed stage has a working stroke of 40.2 × 42.9 μm2 corresponding to the applied voltage of 100 V, and it has a cross-axis coupling ratio of 0.6% and an input coupling ratio of 3.5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.