Abstract

The increasing biodiesel production generates important amounts of glycerol, by-product that require the development of new and sustainable processes in order to be converted into value added chemicals. In this paper special attention was given to possibility to transform glycerol into solketal, a promising fuel additive able to enhance stability to oxidation and increase the octane number of fuels. Given that the chemical reaction is thermodynamically limited, the current paper proposes a conceptual design of an industrial scale process flowsheet based on a modified structure of a catalytic distillation dividing wall column (CDDWC) in which acetone is used as a stripping agent, in an integrated reaction-separation structured-packing system. The modeling and simulation results performed in Aspen Hysys shown the technical feasibility, the glycerol conversion in the proposed process being over 99% and the purity of the solketal product over 99.5% (wt) with a high-quality utility (16 barg pressure steam) consumption of 2441 kJ/kg close to other values reported in the literature and an acetone specific consumption of 0.495 kg/kg solketal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call