Abstract

In order to find out the sensitivity of the thermophysical and structural parameters to the thermodynamic characteristics of twin-tube hydraulic shock absorbers, based on the bench test, a method for calculating the time-varying rate of the external work on the shock absorber oil is proposed. And then, a thermodynamic model of the twin-tube hydraulic shock absorber is established by using the basic thermodynamic principles. By analyzing the influence of each parameter on the thermodynamic characteristics of the shock absorber, it can be seen that, the radius of the working cylinder outer wall has the greatest influence on the temperature rise of the shock absorber, followed by the thermal conductivity of the oil, the height of the oil, the heat transfer length of the cylinder barrel, the radius of the oil storage cylinder outer wall, the emissivity of the oil storage cylinder outer wall, the height of the nitrogen, the thermal conductivity of the nitrogen, the specific heat capacity of the oil, the density of the oil, the thermal conductivity of the cylinder, and the mass of the working oil. The kinematic viscosity of the oil has the least influence on the temperature rise of the shock absorber. The research can provide an effective theoretical guidance and reference for the design of the twin-tube hydraulic shock absorber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.