Abstract
Abstract In this contribution, a mathematical model of an industrial trickle-bed reactor employed in the purification of a C4 cut by selective hydrogenation of acetylenic or dienes compounds to obtain high purity 1-butene is presented. A reaction network of ten reactions is included in the model, with kinetics expressions and parameter estimation obtained from previous experimental studies on a commercial catalyst. Internal mass transfer resistances in the catalyst particles are significant; therefore the reaction-diffusion equations must be solved. External mass transfer resistances in the liquid phase were retained, while those in the vapor phase were negligible. The model was employed to analyze the reactor behavior by varying the inlet molar flow rate of hydrogen, the operating pressure, inlet temperature and the level of activity of the catalyst, taking into account its deactivation. It was demonstrated that the mass transfer resistances, inside and outside the catalyst particles, have a significant impact on the selectivity, but a careful operation of the reactor can improve the selectivity and extent the catalyst life. On the other hand, an alternative system was proposed, with two beds and a distributed input of H2, which led to a significant improvement in the selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Chemical Reactor Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.