Abstract

The article addresses the mathematical modeling of the folding of a thin elastic sheet along a prescribed curved arc. A rigorous model reduction from a general hyperelastic material description is carried out under appropriate scaling conditions on the energy and the geometric properties of the folding arc in dependence on the small sheet thickness. The resulting two-dimensional model is a piecewise nonlinear Kirchhoff plate bending model with a continuity condition at the folding arc. A discontinuous Galerkin method and an iterative scheme are devised for the accurate numerical approximation of large deformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call