Abstract

HighlightsAir temperature, relative humidity (RH), and velocity affect the thermal microenvironment in loaded poultry coops.Increasing air velocity alone will not alleviate bird distress for some combinations of air temperature and RH.Heat generated by the birds affects the thermal microenvironment in loaded poultry coops.A CFD model can precisely predict the thermal microenvironment at any location in a loaded poultry coop.Abstract. Exposure of broilers to extremes of temperature and relative humidity (RH) during the summer can cause bird mortalities. Broiler welfare can be represented by the enthalpy comfort index (ECI), an integrated parameter for characterizing the thermal microenvironment. In this study, computational fluid dynamics (CFD) simulations were conducted to investigate the combined effects of temperature, RH, air velocity, and heat produced by the birds on the ECI inside a poultry coop. To validate the computational model, a case study was carried out, and predictions were compared to data from the literature. After validation, several cases with varying RH, heat generation, and air velocity were considered, and the results were used to calculate the ECI and consequently evaluate bird welfare. Regardless of the air temperature and RH at the air inlet, the heat produced by the birds and the lack of airflow in the areas behind the birds created an undesirable thermal microenvironment (warning, critical, or lethal ECI levels) inside the coop. The results obtained from the computational model can be used for optimizing the specific environmental conditions in poultry coops to improve bird welfare. Keywords: Broilers welfare, CFD simulation, Thermal microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.