Abstract

Vacuum drying is one of the most effective methods to protect submarine natural gas pipes from blockage caused by hydrate and internal corrosion. This article presents a model for analyzing the mass, momentum, and energy transfer processes in pipeline drying with vacuum drying method. Model of the evaporation rate of liquid water is derived from Hertz–Knudsen–Schrage equation. Finite volume method is employed to discretize the governing equations with an upwind implicit scheme in present work, and 2nd order upwind scheme for energy equation is adopted to weaken numerical dissipation. Non-linear algebraic equations after discretization are solved by Newton-Raphson method. Reliability and accuracy of this model are validated via three experimental cases. Numerical results coincide well with the experimental data, and the relative errors of the calculated drying time are 1.7% in Case 1, 1.2% in Case 2, and 5.5% in Case 3. Finally, the dynamic characteristics of the vacuum drying process are analyzed such as dynamic distributions of pressure, temperature, mass flow rate, and liquid holdup. Mathematical model and algorithm developed in present work provide understanding and insights of the vacuum drying process, which aids in determining cost-effective pipeline drying scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.